Hardness study and selection algorithms

نویسنده

  • Ladjel Bellatreche
چکیده

Horizontal Partitioning has been largely adopted by the database community, where it took a significant part in the physical design process. Actually, it is supported by most commercial database systems (DBMS), where a native Data Definition Language for decomposing tables/materialized views using various modes is proposed. In traditional databases, horizontal partitioning has been largely studied, where several fragmentation algorithms were proposed to partition tables in isolation. In the relational data warehouse environment, horizontal partitioning consists in decomposing the whole warehouse schema into sub schemas, where each schema contains fragments of dimension and fact tables. Dimension tables are fragmented using the primary partitioning mode, whereas the fact table is divided using referential mode. In this article, the authors first focus on the evolution of horizontal partitioning in commercial DBMS motivated by decision support applications. Secondly, they give a formalization of the referential fragmentation schema selection problem in the data warehouse and they study its hardness to select an optimal solution. Due to its high complexity, they develop two algorithms: hill climbing and simulated annealing with several variants to select a near optimal partitioning schema. Finally, extensive experimental studies are conducted using the data set of APB1 benchmark to compare the quality the proposed algorithms using a mathematical cost model. Based on these experiments, some recommendations are given to advise database administrator for well using horizontal partitioning. DOI: 10.4018/jdwm.2009080701 IGI PUBLISHING This paper appears in the publication, International Journal of Data Warehousing and Mining, Volume 5, Issue 4 edited by David Taniar © 2009, IGI Global 701 E. Chocolate Avenue, Hershey PA 17033-1240, USA Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-global.com ITJ 5289

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-criteria approach to project portfolio selection considering structural hardness and correlations between projects

Project portfolio selection is very important subject of decision-makers in project-based organizations. The best assignment of resources to the most appropriate projects is necessary as financing projects with low benefit is just waste of organization's resources. However, existing project selection models pay not much attention the structure and special features of projects as a selection cri...

متن کامل

On Approximating Target Set Selection

We study the Target Set Selection (TSS) problem introduced by Kempe, Kleinberg, and Tardos (2003). This problem models the propagation of influence in a network, in a sequence of rounds. A set of nodes is made “active” initially. In each subsequent round, a vertex is activated if at least a certain number of its neighbors are (already) active. In the minimization version, the goal is to activat...

متن کامل

Comparison of particle swarm optimization and tabu search algorithms for portfolio selection problem

Using Metaheuristics models and Evolutionary Algorithms for solving portfolio problem has been considered in recent years.In this study, by using particles swarm optimization and tabu search algorithms we  optimized two-sided risk measures . A standard exact penalty function transforms the considered portfolio selection problem into an equivalent unconstrained minimization problem. And in final...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

A stochastic model for project selection and scheduling problem

Resource limitation in zero time may cause to some profitable projects not to be selected in project selection problem, thus simultaneous project portfolio selection and scheduling problem has received significant attention. In this study, budget, investment costs and earnings are considered to be stochastic. The objectives are maximizing net present values of selected projects and minimizing v...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016